ar X iv : m at h / 05 02 32 5 v 1 [ m at h . D G ] 1 5 Fe b 20 05 ON NON - NEGATIVELY CURVED METRICS ON OPEN FIVE - DIMENSIONAL MANIFOLDS
نویسنده
چکیده
Let V n be an open manifold of non-negative sectional curvature with a soul Σ of co-dimension two. The universal cover Ñ of the unit normal bundle N of the soul in such a manifold is isometric to the direct productM×R. In the study of the metric structure of V n an important role plays the vector field X which belongs to the projection of the vertical planes distribution of the Riemannian submersion π : V → Σ on the factor M in this metric splitting Ñ = M × R. The case n = 4 was considered in [GT] where the authors prove that X is a Killing vector field while the manifold V 4 is isometric to the quotient ofM×(R, gF )×R by the flow along the corresponding Killing field. Following an approach of [GT] we consider the next case n = 5 and obtain the same result under the assumption that the set of zeros of X is not empty. Under this assumption we prove that both M and Σ admit an open-book decomposition with a bending which is a closed geodesic and pages which are totally geodesic two-spheres, the vector field X is Killing, while the whole manifold V 5 is isometric to the quotient of M × (R, gF )×R by the flow along corresponding Killing field.
منابع مشابه
ar X iv : m at h / 05 02 05 3 v 3 [ m at h . G N ] 2 5 Fe b 20 05 SOME RESULTS IN GENERALIZED ŠERSTNEV SPACES
In this paper, we show that D-compactness in GeneralizedŠerstnev spaces implies D-boundedness and as in the classical case, a D-bounded and closed subset of a characteristic GeneralizedŠerstnev is not D-compact in general. Finally, in the finite dimensional GeneralizedŠerstnev spaces a subset is D-compact if and only if it is D-bounded and closed.
متن کاملar X iv : m at h / 05 02 05 3 v 2 [ m at h . G N ] 2 3 Fe b 20 05 SOME RESULTS IN GENERALIZED ŠERSTNEV SPACES
In this paper, we show that D-compactness in GeneralizedŠerstnev spaces implies D-boundedness and as in the classical case, a D-bounded and closed subset of a characteristic GeneralizedŠerstnev is not D-compact in general. Finally, in the finite dimensional GeneralizedŠerstnev spaces a subset is D-compact if and only if is D-bounded and closed.
متن کاملar X iv : m at h / 05 02 09 4 v 2 [ m at h . D G ] 1 5 M ar 2 00 5 THE SECOND YAMABE INVARIANT
Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. We define the second Yamabe invariant as the infimum of the second eigenvalue of the Yamabe operator over the metrics conformal to g and of volume 1. We study when it is attained. As an application, we find nodal solutions of the Yamabe equation.
متن کاملar X iv : m at h / 05 02 46 4 v 1 [ m at h . G T ] 2 2 Fe b 20 05 GENERALIZED MARKOFF MAPS AND MCSHANE ’ S IDENTITY
Following Bowditch [5], we study representations of the free group on two generators into SL(2, C), and the connection with generalized Markoff maps. We show that Bowditch’s Q-conditions for generalized Markoff maps are sufficient for the generalized McShane identity to hold for the corresponding representations. These conditions are very close to being necessary as well, and a large class of r...
متن کاملar X iv : m at h / 05 02 50 5 v 1 [ m at h . A P ] 2 4 Fe b 20 05 Some Remarks on Strichartz Estimates for Homogeneous Wave Equation ∗
We give several remarks on Strichartz estimates for homogeneous wave equation with special attention to the cases of Lx estimates, radial solutions and initial data from the inhomogeneous Sobolev spaces. In particular, we give the failure of the endpoint estimate L 4 n−1 t Lx for n = 2, 3 even for data in inhomogeneous Sobolev spaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005